Chapter 11 PRIVACY PROTECTION IN COLLABORATIVE FILTERING BY ENCRYPTED COMPUTATION

نویسندگان

  • Wim F.J. Verhaegh
  • Aukje E.M. van Duijnhoven
  • Pim Tuyls
  • Jan Korst
چکیده

We present a method to protect users’ privacy in collaborative filtering by performing the computations on encrypted data. We focus on the commonly-used memory-based approach, and show that the two main steps in collaborative filtering, being the determination of similarities and the prediction of ratings, can be performed on encrypted profiles. We discuss both user-based and item-based collaborative filtering, and for a number of variants of the similarity measures and prediction formulas described in literature, we show how they can be computed using encrypted data only. Although we consider collaborative filtering in this chapter, the techniques of comparing profiles using encrypted data only is useful in a much wider range of applications.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Privacy Protection in Memory-Based Collaborative Filtering

We discuss the issue of privacy protection in collaborative filtering, focusing on the commonly-used memory-based approach. We show that the two main steps in collaborative filtering, being the determination of similarities and the prediction of ratings, can be performed on encrypted profiles, thereby securing the users’ private data. We list a number of variants of the similarity measures and ...

متن کامل

Privacy Enhanced Recommender System

Recommender systems are widely used in online applications since they enable personalized service to the users. The underlying collaborative filtering techniques work on user’s data which are mostly privacy sensitive and can be misused by the service provider. To protect the privacy of the users, we propose to encrypt the privacy sensitive data and generate recommendations by processing them un...

متن کامل

Collaborative Filtering with Privacy

Server-based collaborative filtering systems have been very successful in e-commerce and in direct recommendation applications. In future, they have many potential applications in ubiquitous computing settings. But today’s schemes have problems such as loss of privacy, favoring retail monopolies, and with hampering diffusion of innovations. We propose an alternative model in which users control...

متن کامل

Privacy-preserving Targeted Advertising

Recommendation systems form the center piece of a rapidly growing trillion dollar online advertisement industry. Even with optimizations/approximations, collaborative filtering (CF) approaches require real-time computations involving very large vectors. Curating and storing such related profile information vectors on web portals seriously breaches the user’s privacy. While achieving private rec...

متن کامل

Privacy-preserving Collaborative Filtering based on Randomized Perturbation Techniques and Secure Multiparty Computation

With the evolution of the Internet, collaborative filtering techniques are becoming increasingly popular in E-commerce recommender systems. Such techniques recommend items to users employing similar users' preference data. People use recommender systems to cope with information overload. Although collaborative filtering systems are widely used by E-commerce sites, they fail to protect users' pr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006